skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Foster, Emma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Living in urban environments presents many challenges to wildlife, including exposure to potentially toxic pollutants. For example, the heavy metal lead (Pb) introduces numerous health problems to all animals, including humans. The little work that has been conducted on lead toxicity in reptiles suggests that lizards may be extraordinarily resilient to very high levels of lead pollution, by either avoiding or mitigating the toxicity. To assess the impact of lead exposure, we measured field blood levels and tested for the effects on ecologically relevant performance measures in common wall lizards (Podarcis muralis) – a small reptile particularly capable of thriving in urban environments. We captured lizards from roadside and park habitats across Cincinnati, Ohio, USA, and quantified the concentration of lead in blood samples (n = 71 adult lizards). Lizards from roadside populations had higher blood lead concentrations than lizards from park populations, and females had higher blood lead concentrations than males regardless of habitat type. We then tested two aspects of lizard performance important for survival: (1) balance, a cognitively demanding task, to assess the effect of lead on cognition (N = 41), and (2) running endurance, an aerobic exercise dependent on oxygen (N = 43), to assess the impact of lead on blood oxygen-carrying capacity. We then used correlation analyses to quantify the relationship between lead levels and these ecologically-relevant performance measures. There was no effect of blood lead levels on running endurance, but contrary to our predictions there was a slight positive effect on balance performance, whereby lizards with higher blood lead concentrations slipped less often than lizards with lower blood lead concentrations. Understanding the effects of lead toxicity and resilience in a particularly resistant animal could help us better respond to public health and environmental pollution concerns. 
    more » « less
  2. This is a short note describing an observation of a trifurcated tail and an analysis of tail regeneration rates of lizards among populations in Ohio. 
    more » « less
  3. Polycyclic aromatic hydrocarbons are ubiquitous air pollutants, with additional widespread exposure in the diet. PAH exposure has been linked to adverse birth outcomes and long-term neurological consequences. To understand genetic differences that could affect susceptibility following developmental exposure to polycyclic aromatic hydrocarbons, we exposed mice with variations in the aryl hydrocarbon receptor and the three CYP1 enzymes from gestational day 10 (G10) to weaning at postnatal day 25 (P25). We found unexpectedly high neonatal lethality in high-affinity AhrbCyp1b1(-/-) knockout mice compared with all other genotypes. Over 60% of BaP-exposed pups died within their first 5 days of life. There was a significant effect of BaP on growth rates in surviving pups, with lower weights observed from P7 to P21. Again, AhrbCyp1b1(-/-) knockout mice were the most susceptible to growth retardation. Independent of treatment, this line of mice also had impaired development of the surface righting reflex. We used high-resolution mass spectrometry to measure BaP and metabolites in tissues from both dams and pups. We found the highest BaP levels in adipose from poor-affinity AhrdCyp1a2(-/-) dams and identified three major BaP metabolites (BaP-7-OH, BaP-9-OH, and BaP-4,5-diol), but our measurements were limited to a single time point. Future work is needed to understand BaP pharmacokinetics in the contexts of gestation and lactation and how differential metabolism leads to adverse developmental outcomes. 
    more » « less
  4. Abstract A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of the COVID-19 pandemic that originated in China in December 2019. Although extensive research has been performed on SARS-CoV-2, the binding behavior of spike (S) protein and receptor binding domain (RBD) of SARS-CoV-2 at different environmental conditions have yet to be studied. The objective of this study is to investigate the effect of temperature, fatty acids, ions, and protein concentration on the binding behavior and rates of association and dissociation between the S protein and RBD of SARS-CoV-2 and the hydrophobic aminopropylsilane (APS) biosensors using biolayer interferometry (BLI) validated with molecular dynamics simulation. Our results suggest three conditions—high ionic concentration, presence of hydrophobic fatty acids, and low temperature—favor the attachment of S protein and RBD to hydrophobic surfaces. Increasing the temperature within an hour from 0 to 25 °C results in S protein detachment, suggesting that freezing can cause structural changes in the S protein, affecting its binding kinetics at higher temperature. At all the conditions, RBD exhibits lower dissociation capabilities than the full-length S trimer protein, indicating that the separated RBD formed stronger attachment to hydrophobic surfaces compared to when it was included in the S protein. 
    more » « less